

University of Birmingham simulations update

P.P. Allport, L. Gonella, P. Ilten, P.G. Jones, P.R. Newman, H. Wennlöf 9th of July 2020

Fun4All – GDML import

- Thanks to Jin, Alexander, and Rey for helping with this
- EICROOT set up to export geometry pieces as GDML files
 - One file for each subdetector part, see next slide
- Possible to import the exact EICROOT geometries used into new framework, thus using EICROOT as a "scripting tool" for easily generating layouts

Fun4All – GDML import

- Bst.gdml Sitpc.gdml TimeStamping.gdml Vst.gdml Fst.gdml
- Beampipe 18 mm radius 0.8 mm thick beryllium, as in EICROOT.
 Study done in central region.
- Set up in a modular way, easy to turn on/off detectors

EICROOT benchmarking

- Using a previous study in EICROOT:
 - Export GDML geometry, and import into Fun4All
 - Generate particles in same parameter space
 - Run same analysis code on output
 - Compare results
- All-silicon, varying outer radius study used
 - Details: http://cern.ch/go/xKk6

EICROOT benchmarking – initial results

- Relative momentum resolution studied already
- Different outer radii used;
 - 409.8 mm
 - 500.0 mm
 - 600.0 mm
 - 775.0 mm
- Dashed lines: Fun4All.Filled lines: EICROOT
- No significant difference between results from the different frameworks

EICROOT benchmarking – pointing resolutions

- Originally: big difference between frameworks.
- Constant offset.
- Jin helped straighten it out; difference in how distance of closest approach was extracted.
- New results: see next slide

Transverse pointing resolution

EICROOT benchmarking – pointing resolutions

Transverse pointing resolution

Longitudinal pointing resolution

- Generally very good agreement between the frameworks.
- Gives confidence that both old and new studies are relevant.

Current/future plans

- Simulations of physics events using different detector configurations.
- Pythia events have been generated for e-p collisions and photon-gluon fusion to cc̄ at energies suggested by Physics WG at Pavia meeting:
 - 5x41 GeV
 - 5x100 GeV
 - 10x100 GeV
 - 18x275 GeV
- A theoretical study of the impact of pixel size on D⁰ vertex separation has been done using Pythia data.

- Events currently being propagated and reconstructed through different detector layouts using Fun4All.
- First study: D⁰ invariant mass reconstruction, with different parameters.

 Near future: mass difference D* and D0.

Q